Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(9)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37755090

RESUMO

Secondary metabolites-organic compounds that are often bioactive-produced by endophytes, among others, provide a selective advantage by increasing the organism's survivability. Secondary metabolites mediate the symbiotic relationship between endophytes and their host, potentially providing the host with tolerance to, and protection against biotic and abiotic stressors. Secondary metabolites can be secreted as a dissolved substance or emitted as a volatile. In a previous study, we isolated bioactive endophytes from several macroalgae and tested them in vitro for their ability to inhibit major disease-causing pathogens of aquatic animals in the aquaculture industry. One endophyte (isolate Abp5, K. flava) inhibited and killed, in vitro, the pathogen Saprolegnia parasitica, an oomycete that causes saprolegniasis-a disease affecting a wide range of aquatic animals. Here, using analytical chemistry tools, we found that Abp5 produces the volatile organic compound (VOC) 8-nonenoic acid. Once we confirmed the production of this compound by the endophyte, we tested the compound's ability to treat S. parasitica in in vitro and in vivo bioassays. In the latter, we found that 5 mg/L of the compound improves the survival of larvae challenged with S. parasitica by 54.5%. Our isolation and characterization of the VOC emitted by the endophytic K. flava establish the groundwork for future studies of endophytic biocontrol agents from macroalgae. Use of this compound could enable managing oomycete agricultural pathogens in general, and S. parasitica in particular, a major causal agent in aquaculture diseases.

2.
ISME J ; 17(1): 47-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36163270

RESUMO

Diazotrophs are widespread microorganisms that alleviate nitrogen limitation in 60% of our oceans, thereby regulating marine productivity. Yet, the group-specific contribution of diazotrophs to organic matter export has not been quantified, which so far has impeded an accurate assessment of their impact on the biological carbon pump. Here, we examine the fate of five groups of globally-distributed diazotrophs by using an original combination of mesopelagic particle sampling devices across the subtropical South Pacific Ocean. We demonstrate that cyanobacterial and non-cyanobacterial diazotrophs are exported down to 1000 m depth. Surprisingly, group-specific export turnover rates point to a more efficient export of small unicellular cyanobacterial diazotrophs (UCYN) relative to the larger and filamentous Trichodesmium. Phycoerythrin-containing UCYN-B and UCYN-C-like cells were recurrently found embedded in large (>50 µm) organic aggregates or organized into clusters of tens to hundreds of cells linked by an extracellular matrix, presumably facilitating their export. Beyond the South Pacific, our data are supported by analysis of the Tara Oceans metagenomes collected in other ocean basins, extending the scope of our results globally. We show that, when diazotrophs are found in the euphotic zone, they are also systematically present in mesopelagic waters, suggesting their transport to the deep ocean. We thus conclude that diazotrophs are a significant part of the carbon sequestered in the deep ocean and, therefore, they need to be accounted in regional and global estimates of export.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Nitrogênio , Carbono , Água do Mar/microbiologia , Cianobactérias/genética , Oceano Pacífico
3.
Biochim Biophys Acta Bioenerg ; 1863(8): 148910, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944660

RESUMO

The increase in world energy consumption, and the worries from potential future disasters that may derive from climate change have stimulated the development of renewable energy technologies. One promising method is the utilization of whole photosynthetic cyanobacterial cells to produce photocurrent in a bio-photo electrochemical cell (BPEC). The photocurrent can be derived from either the respiratory or photosynthetic pathways, via the redox couple NADP+/NADPH mediating cyclic electron transport between photosystem I inside the cells, and the anode. In the past, most studies have utilized the fresh-water cyanobacterium Synechocystis sp. PCC 6803 (Syn). Here, we show that the globally important marine cyanobacterium Trichodesmium erythraeum flourishing in the subtropical oceans can provide improved currents as compared to Syn. We applied 2D-fluorescence measurements to detect the secretion of NADPH and show that the resulting photocurrent production is enhanced by increasing the electrolyte salinity, Further enhancement of the photocurrent can be obtained by the addition of electron mediators such as NAD+, NADP+, cytochrome C, vitamin B1, or potassium ferricyanide. Finally, we produce photocurrent from additional cyanobacterial species: Synechocystis sp. PCC6803, Synechococcus elongatus PCC7942, Acaryochloris marina MBIC 11017, and Spirulina, using their cultivation media as electrolytes for the BPEC.


Assuntos
Complexo de Proteína do Fotossistema I , Synechocystis , Citocromos c/metabolismo , NAD/metabolismo , NADP/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Synechocystis/metabolismo , Tiamina , Trichodesmium , Água/metabolismo
4.
ISME J ; 16(10): 2398-2405, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35835942

RESUMO

The photosynthetic cyanobacterium Trichodesmium is widely distributed in the surface low latitude ocean where it contributes significantly to N2 fixation and primary productivity. Previous studies found nifH genes and intact Trichodesmium colonies in the sunlight-deprived meso- and bathypelagic layers of the ocean (200-4000 m depth). Yet, the ability of Trichodesmium to fix N2 in the dark ocean has not been explored. We performed 15N2 incubations in sediment traps at 170, 270 and 1000 m at two locations in the South Pacific. Sinking Trichodesmium colonies fixed N2 at similar rates than previously observed in the surface ocean (36-214 fmol N cell-1 d-1). This activity accounted for 40 ± 28% of the bulk N2 fixation rates measured in the traps, indicating that other diazotrophs were also active in the mesopelagic zone. Accordingly, cDNA nifH amplicon sequencing revealed that while Trichodesmium accounted for most of the expressed nifH genes in the traps, other diazotrophs such as Chlorobium and Deltaproteobacteria were also active. Laboratory experiments simulating mesopelagic conditions confirmed that increasing hydrostatic pressure and decreasing temperature reduced but did not completely inhibit N2 fixation in Trichodesmium. Finally, using a cell metabolism model we predict that Trichodesmium uses photosynthesis-derived stored carbon to sustain N2 fixation while sinking into the mesopelagic. We conclude that sinking Trichodesmium provides ammonium, dissolved organic matter and biomass to mesopelagic prokaryotes.


Assuntos
Compostos de Amônio , Trichodesmium , Compostos de Amônio/metabolismo , Carbono/metabolismo , DNA Complementar/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio , Oceanos e Mares , Oceano Pacífico , Água do Mar/microbiologia , Trichodesmium/genética , Trichodesmium/metabolismo
5.
Front Microbiol ; 13: 879970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707175

RESUMO

Trichodesmium are filamentous cyanobacteria of key interest due to their ability to fix carbon and nitrogen within an oligotrophic marine environment. Their blooms consist of a dynamic assemblage of subpopulations and colony morphologies that are hypothesized to occupy unique niches. Here, we assessed the poorly studied diversity of Trichodesmium in the Red Sea, based on metagenome-assembled genomes (MAGs) and hetR gene-based phylotyping. We assembled four non-redundant MAGs from morphologically distinct Trichodesmium colonies (tufts, dense and thin puffs). Trichodesmium thiebautii (puffs) and Trichodesmium erythraeum (tufts) were the dominant species within these morphotypes. While subspecies diversity is present for both T. thiebautii and T. erythraeum, a single T. thiebautii genotype comprised both thin and dense puff morphotypes, and we hypothesize that this phenotypic variation is likely attributed to gene regulation. Additionally, we found the rare non-diazotrophic clade IV and V genotypes, related to Trichodesmium nobis and Trichodesmium miru, respectively that likely occurred as single filaments. The hetR gene phylogeny further indicated that the genotype in clade IV could represent the species Trichodesmium contortum. Importantly, we show the presence of hetR paralogs in Trichodesmium, where two copies of the hetR gene were present within T. thiebautii genomes. This may lead to the overestimation of Trichodesmium diversity as one of the copies misidentified T. thiebautii as Trichodesmium aureum. Taken together, our results highlight the importance of re-assessing Trichodesmium taxonomy while showing the ability of genomics to capture the complex diversity and distribution of Trichodesmium populations.

6.
ISME Commun ; 1(1): 3, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37938230

RESUMO

Diazotrophs are important contributors to nitrogen availability in the ocean. Oceanographic cruise data accumulated over the past three decades has revealed a heterogeneous distribution of diazotroph species at regional to global scales. However, dynamic fine-scale physical structures likely affect the distribution of diazotrophs at smaller spatiotemporal scales. The interaction between fine-scale ocean dynamics and diazotrophs remains poorly understood due to typically insufficient spatiotemporal sampling resolution and the lack of parallel detailed physical studies. Here we show the distribution of five groups of diazotrophs in the South Pacific at an unprecedented resolution of 7-16 km. We find a patchy distribution of diazotrophs, with each group being differentially affected by parameters describing fine-scale physical structures. The observed variability in species abundance and distribution would be masked by a coarser sampling resolution, highlighting the need to consider fine-scale physics to resolve the distribution of diazotrophs in the ocean.

7.
Mol Cell ; 77(5): 927-929, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142688
8.
Environ Microbiol ; 21(2): 667-681, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30585394

RESUMO

Metacaspases are cysteine specific proteases implicated in cell-signalling, stress acclimation and programmed cell death (PCD) pathways in plants, fungi, protozoa, bacteria and algae. We investigated metacaspase-like gene expression and biochemical activity in the bloom-forming, N2 -fixing, marine cyanobacterium Trichodesmium, which undergoes PCD under low iron and high-light stress. We examined these patterns with respect to in-silico analyses of protein domain architectures that revealed a diverse array of regulatory domains within Trichodesmium metacaspases-like (TeMC) proteins. Experimental manipulations of laboratory cultures and oceanic surface blooms of Trichodesmium from the South Pacific Ocean triggered PCD under Fe-limitation and high light along with enhanced TeMC activity and upregulated expression of diverse TeMC representatives containing different regulatory domains. Furthermore, TeMC activity was significantly and positively correlated with caspase-like activity, which has been routinely observed to increase with PCD induction in Trichodesmium. Although both TeMC and caspase-like activities were stimulated upon PCD induction, inhibitor treatments of these proteolytic activities provided further evidence of largely distinct substrate specificities, even though some inhibitory crossover was observed. Our findings are the first results linking metacaspase expression and activity in PCD induced mortality in Trichodesmium. Yet, the role/s and specific activities of these different proteins remain to be elucidated.


Assuntos
Apoptose , Proteínas de Bactérias/metabolismo , Caspases/metabolismo , Trichodesmium/citologia , Trichodesmium/enzimologia , Animais , Apoptose/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Caspases/química , Caspases/genética , Oceano Pacífico , Domínios Proteicos , Água do Mar/microbiologia , Trichodesmium/isolamento & purificação
9.
Bio Protoc ; 9(16): e3341, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654845

RESUMO

Programmed cell death (PCD) is an irreversible, genetically-controlled form of cell suicide in which an endogenous biochemical pathway leads to morphological changes and ultimately, cellular demise. PCD is accompanied by de-novo protein synthesis of a family of proteases-"caspases" that are often used as a diagnostic marker of PCD. Although phytoplankton do not contain true caspases, caspase-like activity (hypothetical proteins with analogous activity) has been traditionally used as a diagnostic marker of PCD in marine phytoplankton. Increased caspase-like proteolytic activity was demonstrated when synthetic fluorogenic activity substrates specific for caspases (with an Asp at the P1 position) were applied upon PCD induction. Metacaspases, cysteine proteases, share structural properties with those of caspases, yet they are highly specific for Arg and Lys cleavage site at the P1 position implying that caspase specific substrates are not indicative of metacaspase catalytic activity. This method specifically tests direct metacaspase activity in phytoplankton by the cleavage of the fluorogenic metacaspase substrate Ac-VRPR-AMC. Metacaspase activity was tested by the addition of a metacaspase specific peptide that is conjugated to the fluorescent reporter molecule. The cleavage of the peptide by the metacaspase releases the fluorochrome that, when excited by light, emits fluorescence. The level of metacaspase enzymatic activity in the cell lysate is directly proportional to the fluorescence signal detected. The use of specific standards in this test enables the quantification of the fluorescence results. This assay directly allows monitoring the metacaspase cleavage products and thereby tracing evidence for programmed cell death.

10.
ISME J ; 12(7): 1682-1693, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463890

RESUMO

Trichodesmium spp. are diazotrophic cyanobacteria that exist as single filaments (trichomes) and as macroscopic colonies of varying shapes formed by aggregating trichomes. The causes and dynamics of colony formation and disassociation are not yet elucidated. we demonstrate that limited availability of dissolved phosphorus (P) or iron (Fe) stimulated trichome mobility and induced colony formation in Trichodesmium erythraeum IMS101 cultures. The specific nutrient limitation differentially affected the rate of colony formation and morphology of the colonies. Fe starvation promoted rapid colony formation (10-48 h from depletion) while 5-7 days were required for colonies to form in P-depleted cultures. Video analyses confirmed that the probability of trichomes to cluster increased from 12 to 35% when transferred from nutrient replete to Fe-depleted conditions. Moreover, the probability for Fe-depleted aggregates to remain colonial increased to 50% from only 10% in nutrient replete cultures. These colonies were also characterized by stronger attachment forces between the trichomes. Enrichment of nutrient-depleted cultures with the limited nutrient-stimulated colony dissociation into single trichomes. We postulate that limited P and Fe availability enhance colony formation of Trichodesmium and primarily control the abundance and distribution of its different morphologies in the nutrient-limited surface ocean.


Assuntos
Ferro/metabolismo , Fósforo/metabolismo , Trichodesmium/crescimento & desenvolvimento , Trichodesmium/metabolismo , Água do Mar/microbiologia
11.
ISME J ; 12(4): 981-996, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29335641

RESUMO

Interactions between co-existing microorganisms deeply affect the physiology of the involved organisms and, ultimately, the function of the ecosystem as a whole. Copiotrophic Alteromonas are marine gammaproteobacteria that thrive during the late stages of phytoplankton blooms in the marine environment and in laboratory co-cultures with cyanobacteria such as Trichodesmium. The response of this heterotroph to the sometimes rapid and transient changes in nutrient supply when the phototroph crashes is not well understood. Here, we isolated and sequenced the strain Alteromonas macleodii str. Te101 from a laboratory culture of Trichodesmium erythraeum IMS101, yielding a chromosome of 4.63 Mb and a single plasmid of 237 kb. Increasing salinities to ≥43 ppt inhibited the growth of Trichodesmium but stimulated growth of the associated Alteromonas. We characterized the transcriptomic responses of both microorganisms and identified the complement of active transcriptional start sites in Alteromonas at single-nucleotide resolution. In replicate cultures, a similar set of genes became activated in Alteromonas when growth rates of Trichodesmium declined and mortality was high. The parallel activation of fliA, rpoS and of flagellar assembly and growth-related genes indicated that Alteromonas might have increased cell motility, growth, and multiple biosynthetic activities. Genes with the highest expression in the data set were three small RNAs (Aln1a-c) that were identified as analogs of the small RNAs CsrB-C in E. coli or RsmX-Z in pathogenic bacteria. Together with the carbon storage protein A (CsrA) homolog Te101_05290, these RNAs likely control the expression of numerous genes in responding to changes in the environment.


Assuntos
Alteromonas/genética , Transcriptoma , Trichodesmium/crescimento & desenvolvimento , Alteromonas/crescimento & desenvolvimento , Alteromonas/metabolismo , Proteínas de Bactérias/genética , Interações Microbianas , Pequeno RNA não Traduzido/metabolismo , Salinidade , Sítio de Iniciação de Transcrição , Trichodesmium/genética
12.
Front Microbiol ; 8: 1736, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28943875

RESUMO

Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2) fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs) remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L-1 d-1). Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.

13.
Mar Genomics ; 33: 21-25, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28237778

RESUMO

De-novo assembly of a metagenomic dataset obtained from a decaying cyanobacterial Trichodesmium bloom from the New Caledonian lagoon resulted in a complete giant phage genome of 257,908bp, obtained independently with multiple assembly tools. Noteworthy, gammaproteobacteria were an abundant fraction in the sequenced samples. Mapping of the raw reads with 99% accuracy to the giant phage genome resulted in an average coverage of 262X. The closest sequenced relatives, albeit still distant, are the Pseudomonas phages PaBG from Lake Baikal and Lu11 isolated from a soil sample from the Philippines. The phage reported here might belong to the same family within the Myoviridae as PaBG and Lu11 and would thus be its first marine member, indicating a more widespread occurrence of this group. We named this phage NCTB (New Caledonia Trichodesmium Bloom) after its origin.


Assuntos
DNA Viral/genética , Genoma Viral , Myoviridae/genética , Trichodesmium/virologia , Eutrofização , Gammaproteobacteria/virologia , Metagenômica , Myoviridae/isolamento & purificação , Nova Caledônia
14.
Water Res ; 110: 321-331, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28063294

RESUMO

Desalination outflows frequently discharge brine containing coagulants and antiscalants (e.g. Iron-hydroxides and polyphosphonates) to the coastal environment. Here we examined changes in composition and productivity of natural microbial coastal communities in experimental mesocosms treated with either iron-hydroxide (Fe), polyphosphonate (Pn), or a combination of high salinities with both chemicals (All). Within 2 h of addition Fe already altered the microbial community composition, enhanced the bacterial production (BP) and cell specific production (BP/BA), and decreased primary production. Addition of Pn, relieved phosphorus stress as demonstrated by the immediate (within 2 h) and significant reduction in the ecto-enzyme alkaline phosphatase activity (APA). Synergistic effects were observed in the All treatment, reflected by increased production of both primary and bacterial producers as P-stress was relieved. After 10 days of incubation, the microbial community composition changed significantly only in the All treatment. The Fe-only treatment caused a significant decline in autotrophic biomass and in the assimilation number (AN), while in both the Pn and the All treatments the BP/BA increased with the added P. We also examined the microbial community responses in a natural impacted environment at the Ashkelon seawater desalination plant brine discharge site during summer and winter. The community composition differed in elevated-salinity compared with non-impacted stations with higher AN and bacterial efficiencies (BP/BA) measured in summer in the elevated-salinity stations. The seasonal differences in responses may reflect both biotic (i.e. initial community composition) and abiotic factors (currents and residence time of salinity gradients). Our results emphasize that desalination brine discharges that include chemicals such as iron-hydroxide and polyphosphonates can induce physiological and compositional changes in the microbial community. With the expansion of desalination facilities worldwide such shifts in composition and function of the microbial communities may destabilize and change local aquatic food webs and should thus be monitored.


Assuntos
Salinidade , Água do Mar/química , Cadeia Alimentar , Estações do Ano
15.
Mar Genomics ; 32: 23-26, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28007524

RESUMO

The water column in the oligotrophic Gulf of Aqaba/Eilat experiences distinct seasonal cycles with the cooling air and water temperatures of late fall and winter destabilizing the thermocline and forming mixed layer depths reaching 300 to 700m. As air temperatures warm thermal re-stratification results in a stable thermocline throughout the summer which physically separates a photic, nutrient-poor surface layer from an aphotic, nutrient-rich deep layer. Here we present the first metatranscriptome dataset, and its taxonomic assignments, sampled from three depths of the 700m deep Station A in the Gulf of Aqaba during the summer stratification (surface - 10m, deep chlorophyll maximum (DCM) - 85m, deep aphotic zone -500m). Intensive transcriptional activity was attributed to Prochlorococcus - the most abundant photosynthetic organism in the RNA-seq dataset - both at the surface and at the DCM. In contrast, cDNA reads related to picoeukaryotic algae were detected almost exclusively at the DCM. The metatranscriptomes presented here provide a basis for examining the seasonal differences in microbial gene expression by comparison with the published metatranscriptomes sampled during the winter deep-mixing from the same station.


Assuntos
Bactérias/classificação , Bactérias/genética , Microbiota , Perfilação da Expressão Gênica , Israel , Prochlorococcus/classificação , Prochlorococcus/genética , Estações do Ano , Água do Mar/microbiologia , Análise de Sequência de RNA
16.
Proc Natl Acad Sci U S A ; 113(46): 13191-13196, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799527

RESUMO

The oceanic N2-fixing cyanobacterium Trichodesmium spp. form extensive surface blooms and contribute significantly to marine carbon and nitrogen cycles in the oligotrophic subtropical and tropical oceans. Trichodesmium grows in salinities from 27 to 43 parts per thousand (ppt), yet its salt acclimation strategy remains enigmatic because the genome of Trichodesmium erythraeum strain IMS101 lacks all genes for the biosynthesis of any known compatible solute. Using NMR and liquid chromatography coupled to mass spectroscopy, we identified the main compatible solute in T. erythraeum strain IMS101 as the quaternary ammonium compound N,N,N-trimethyl homoserine (or homoserine betaine) and elucidated its biosynthetic pathway. The identification of this compatible solute explains how Trichodesmium spp. can thrive in the marine system at varying salinities and provides further insight into the diversity of microbial salt acclimation.


Assuntos
Homosserina/análogos & derivados , Homosserina/metabolismo , Tolerância ao Sal , Trichodesmium/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Metilação , Espectroscopia de Prótons por Ressonância Magnética
17.
Sci Rep ; 6: 35470, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759035

RESUMO

Metatranscriptomic differential RNA-Seq (mdRNA-Seq) identifies the suite of active transcriptional start sites at single-nucleotide resolution through enrichment of primary transcript 5' ends. Here we analyzed the microbial community at 45 m depth at Station A in the northern Gulf of Aqaba, Red Sea, during 500 m deep mixing in February 2012 using mdRNA-Seq and a parallel classical RNA-Seq approach. We identified promoters active in situ for five different pico-planktonic genera (the SAR11 clade of Alphaproteobacteria, Synechococcus of Cyanobacteria, Euryarchaeota, Thaumarchaeota, and Micromonas as an example for picoeukaryotic algae), showing the applicability of this approach to highly diverse microbial communities. 16S rDNA quantification revealed that 24% of the analyzed community were group II marine Euryarchaeota in which we identified a highly abundant non-coding RNA, Tan1, and detected very high expression of genes encoding intrinsically disordered proteins, as well as enzymes for the synthesis of specific B vitamins, extracellular peptidases, carbohydrate-active enzymes, and transport systems. These results highlight previously unknown functions of Euryarchaeota with community-wide relevance. The complementation of metatranscriptomic studies with mdRNA-Seq provides substantial additional information regarding transcriptional start sites, promoter activities, and the identification of non-coding RNAs.


Assuntos
Organismos Aquáticos , Metagenoma , Metagenômica , Microbiota , Água do Mar/microbiologia , Microbiologia da Água , Biodiversidade , Meio Ambiente , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica/métodos , Conformação de Ácido Nucleico , RNA Ribossômico 16S/genética , Riboswitch/genética , Transcriptoma
18.
Environ Microbiol ; 17(10): 4105-20, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26178627

RESUMO

Seawater desalination plants increase local coastal salinities by discharging concentrated brine back to the sea with ∼ 50% higher than ambient salinities. The impacts of high salinities on microbial coastal populations of the eastern Mediterranean Sea (EMS) were examined in two mesocosm experiments; first, during the mixed-spring and second, during the stratified-summer periods with average salinity of ∼ 39. Ambient salinities were increased by 5% and 15%. Higher salinity (15%) mesocosms induced rapid (within 2 h) declines in both primary productivity (PP) and algal biomass parallel to an increase in bacterial productivity. Subsequently, for the duration of the experiments (11-12 days), both Chlorophyll a and PP rates increased (2 to 5 and 1.5 to 2.5-fold, respectively) relative to unamended controls. The initial assemblages of the ambient microbial populations and intensity of salinity enrichments influenced the community responses. During the mixed-spring experiment, the composition of prokaryotic and eukaryotic populations shifted only slightly, suggesting high functional plasticity of the initial populations. While during the stratified-summer experiment, high salinity changed the composition and reduced the biodiversity of the microbial communities. In an ultra-oligotrophic environment such as the EMS, salinity induced declines in microbial diversity may provide a tipping point destabilizing the local aquatic food web.


Assuntos
Bactérias/metabolismo , Consórcios Microbianos , Plâncton/metabolismo , Salinidade , Água do Mar/química , Água do Mar/microbiologia , Cloreto de Sódio/metabolismo , Bactérias/genética , Sequência de Bases , Biodiversidade , Clorofila/genética , Clorofila A , DNA Bacteriano/genética , Eucariotos/fisiologia , Cadeia Alimentar , Mar Mediterrâneo , Concentração Osmolar , Plâncton/microbiologia , Estações do Ano , Análise de Sequência de DNA
19.
Sci Rep ; 4: 6187, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25155278

RESUMO

Blooms of the dinitrogen-fixing marine cyanobacterium Trichodesmium considerably contribute to new nitrogen inputs into tropical oceans. Intriguingly, only 60% of the Trichodesmium erythraeum IMS101 genome sequence codes for protein, compared with ~85% in other sequenced cyanobacterial genomes. The extensive non-coding genome fraction suggests space for an unusually high number of unidentified, potentially regulatory non-protein-coding RNAs (ncRNAs). To identify the transcribed fraction of the genome, here we present a genome-wide map of transcriptional start sites (TSS) at single nucleotide resolution, revealing the activity of 6,080 promoters. We demonstrate that T. erythraeum has the highest number of actively splicing group II introns and the highest percentage of TSS yielding ncRNAs of any bacterium examined to date. We identified a highly transcribed retroelement that serves as template repeat for the targeted mutation of at least 12 different genes by mutagenic homing. Our findings explain the non-coding portion of the T. erythraeum genome by the transcription of an unusually high number of non-coding transcripts in addition to the known high incidence of transposable elements. We conclude that riboregulation and RNA maturation-dependent processes constitute a major part of the Trichodesmium regulatory apparatus.


Assuntos
Cianobactérias/metabolismo , Transcriptoma , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Íntrons , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Retroelementos
20.
Mar Genomics ; 18 Pt B: 93-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24984262

RESUMO

Metatranscriptomics is a widely used approach to study the gene expression within a whole microbial community. Spatial or temporal differences observed between datasets point to transcriptional responses to changes or alterations in the community's environment. No transcriptomic data has yet been published from the oligotrophic Gulf of Aqaba/Eilat, northern Red Sea. The primary objective of this study was to create a depth-specific snapshot of community gene expression ranging from the surface waters to the bottom of the mixed-layer depth during winter when thermal destratification occurs. Our secondary objective was to compare two different methods for transcriptome analysis. While random RNA sequencing (RNA-seq) is routinely used, differential RNA sequencing (dRNA-seq, enriched in primary transcripts) has never been used for metatranscriptomics. In this dataset, we used dRNA-seq for samples that were collected from three depths while applying RNA-seq for one of the samples to obtain direct comparison between the methods. We de-novo assembled the reads into contigs and show a high percentage of reads mapping back to the contigs, supporting the validity of the assembly.


Assuntos
Perfilação da Expressão Gênica/métodos , Metagenoma/genética , Plâncton/genética , Estações do Ano , Transcriptoma/genética , Movimentos da Água , Sequência de Bases , Biologia Computacional , Primers do DNA/genética , Oceano Índico , Dados de Sequência Molecular , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...